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1. Introduction
The ability to accurately predict material constants for
composite materials has been, and continues to be, an
active area of research. One such constant of interest is
the (effective) thermal conductivity of the composite.
The simplest case for consideration is that of a unidi-
rectional, fiber reinforced, composite in which all the
fibers are assumed to be parallel, and periodically dis-
tributed throughout the composite. For the estimation
of the conductivity parallel to the fiber axis, a simple
weighted average of the constituents has been found to
yield accurate results [4, 10, 14, 16], as the highly con-
ductive fibers transport most of the heat flow through
the composite.

The estimation of the conductivity perpendicular to
the fiber axis has not been nearly as successful. In this
case the matrix itself is largely responsible for the heat
transport, with the fibers, pores and cracks, serving
to disrupt the direct heat flow through the composite.
Three approaches which have been used are:

(i) the reciprocal of the average of the reciprocal of
the constituents (see (4), [6, 14]),
(ii) a variable dispersive model [13, 16],

(iii) estimations based upon calculations for afunda-
mental unit[3, 9, 11].

The effect of porosity(voids and cracks within the com-
posite) is much more pronounced on the conductivity
perpendicular to the fiber axis than in the parallel case.
In the variable dispersive model a shape parameter is
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introduced which models the voids in the composite. In
the case of a composite composed of isotropic fibers and
an isotropic matrix, the variable dispersive model does
reasonable well at predicting the conductivity, as the
model is based on isotropic material properties. How-
ever the model is not as reliable in the case of compos-
ites with anisotropic fibers and matrix. The estimates of
conductivity described in [11] are obtained via a finite
element method approximation of the steady-state heat
flow across a “fundamental unit”. The approximation
procedure described within is much simplier and the
estimates obtained are comparable in accuracy to those
predicted by [11]. The approach described in [3] relies
on the solution of an auxilary problem in an unbounded
domain and does not account for the occurance of voids
in the composite.

In this article we introduce the concept ofhomoge-
nization for the estimation of conductivities for com-
posites, which falls into the class (iii) described above
(Section 2.1). We then propose a simple algebraic ap-
proach, based upon considering the composite as being
made up of “layers”, for the estimation of the effective
thermal conductivities (Section 2.2). We show that the
proposed method (theoretically) yields an upper bound
for the conductivity. A comparison of the theoretical
results with measured data is given (Section 3).

2. Modeling thermal conductivity
of composites

In order to model theeffectivethermal conductivity of a
compositewe must assume some underlying structure
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Figure 1 Illustration of a 2D composite.

for the composite. Throughout we will assume that the
composite is periodic in all directions and we refer to
the unit which is periodically repeated as thefunda-
mental componentfor the composite. (See Fig. 1 for a
2D illustration.) The effective thermal conductivity is a
“bulk” property of thecompositeand is independent of
the ‘size’ of the composite. It corresponds to consider-
ing the material to be macroscopically homogeneous.
Mathematically this corresponds to considering the val-
ues associated with the composite as the ration ofε/ l
goes to zero. (See [2, 15] for a precise description of
this limiting process.) Following a description of the
notation used, in Section 2.1 we give the characteriza-
tion of the effective thermal conductivity matrix for a
composite from homogenization theory. Presented in
Section 2.2 is a simplified model which yields an upper
bound to the values of the effective thermal conductiv-
ity matrix by purely algebraic means. A comparison of
the models for twofundamental componentsis given.

Notation
Following standard notation, we denote byL2(Q) the
space of functions defined onQ which are square inte-
grable, andH1(Q) functions, which along with them-
selves being square integrable, having a square inte-
grable gradient (see [12]). The norm associated with
H1(Q) is

‖u‖2H1 :=‖u‖20+ |u|21,

where

‖u‖20 :=
∫

Q
u2 dx, |u|21 :=

∫
Q
|∇u|2 dx.

The spaceH1
0 (Q) denotes those functions inH1(Q)

which are zero on∂Q, the boundary ofQ.
Consider functions defined in IRm and periodic in

each argumentx1, x2, . . ., xm with periodsl1, l2, . . ., lm,
respectively. Let¥ represent the basic parallelepiped
whose edges are directed along the co-ordinate axes
and have respective lengthsl1, l2, . . . , lm. By 〈g〉 we
represent the mean value of the periodic functiong(x),
i.e.,

〈g〉= 1

|¥|
∫
¥

g(x) dx,

where|¥| denotes the volume of the parallelpiped¥.
The space ofH1 functions with period¥we denote by
H1(¥).

The notationH−1(Q) denotes the “dual space” of
H1(Q), i.e. the set of all continuous linear functionals
on H1

0 (Q), (see[12]). If f is an element ofH−1(¥) then
( f, φ) represents the value of the functional applied to
φ ∈ H1

0 (Q).
Strong convergencein H1

0 (Q) is denoted by the
symbol→. Strong convergence refers to convergence
with respect to the norm, i.e.uε→u0 if lim ε→0‖uε −
u0‖H1

0 (Q)=0. Weak convergenceis denoted by⇀. We
write uε ⇀u0 in H1

0 (Q) if lim ε→0( f,uε)= ( f,u0) for
all f ∈ H−1(Q). Weak convergence may be interpreted
in the indirect sense of “action”, i.e. if the action off
on uε converges to the action off on u0 asε→0 for
all f ∈ H−1(Q), thenuε ⇀u0.

Convergence inL2(Q) is defined analogously.

2.1. Homogenization model
In this section we follow the notation and presenta-
tion in [15]. LetK(x), x ∈ IRm be a periodic matrix
with bounded elements,ki j , satisfying the ellipticity
condition∑

i j

ki j ηi η j ≥ ν1|η|, for all η, x ∈ IRm,whereν1 > 0.

(1)
We assume that the matrix

Kε(x)=K(ε−1x)

characterizes amicro-nonhomogeneous medium.

Definition 1 ([15], p. 12). A constant positive definite
matrix K0 is said to be the homogenized matrix for
K(x), if for any bounded domainQ⊂ IRm and anyf ∈
H−1(Q) the solutionsuε of the Dirichlet problem

uε ∈ H1
0 (Q), div(Kε∇uε)= f,

possess the following convergence properties:

uε
H1

0 (Q)
—————⇀ u0, Kε∇uε

L2(Q)
—————⇀ K0∇u0,

as ε→0, whereu0 is the solution of the Dirichlet
problem

u0 ∈ H1
0 (Q), div(K0∇u0)= f.

Theorem 1 ([15], p. 18). LetK be a symmetric periodic
matrix with bounded elements satisfying the ellipticity
condition(1).Then the symmetric matrixK0 defined by

λ ·K0λ= inf
v∈H1(¥)

〈(λ+∇v) ·K(λ+∇v)〉, (2)

is the homogenized matrix forK in the sense of Defini-
tion 1.

2.2. Layered approximating model
The model we present in this section is based on ap-
proximating the composite by alayeredcomposite. We
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Figure 2 Homogeneous anistropic layered material.

restrict our attention to composites whose components
share the same principal axes of heat conduction. For
clarity of exposition our presentation is in 2D. We begin
by giving a simple derivation for the effective thermal
conductivity for a layered composite. The derivation is
analogous to the presentation in [1, 8] for the effective
hydraulic conductivity in a layered medium in ground-
water flow.

Consider thelayeredcomposite illustrated in Fig. 2.
Within each of the layers,l i having widthdi , we as-
sume that the material is homogeneous and anisotropic
with, the principal axes of thermal conductivity aligned
with thex–y axes with conductivity valueskx

i , andky
i ,

respectively.
Based on these assumptions we have the following

theorem.

Theorem 2.For a 2D ‘vertically’ layered composite,
whose layers have the same principal axes of heat con-
duction, the effective thermal conductivies of the com-
posite kxeff, and ky

eff, are given by

kx
eff=

n∑
i =1

di

d
kx

i , (3)

Figure 3 Example of a 2D composite of parallelepiped type.

and

ky
eff=

d∑n
i =1

(
di /ky

i

) , (4)

where di denotes the height of layer li , having thermal
conductivities kxi , and ky

i , and d= ∑n
i =1 di .

Proof: To establish (3), we assume the model com-
posite extends periodically in they-direction and a con-
stant temperature difference,1T , is maintained across
the entire composite in thex-direction. Denoting byqx

i
the heat-flux at the left of the material along layerl i we
have the amount of heat (per unit time) flowing through
l i is given byqx

i di . Using the basic constitutive rela-
tion between heat-flux, temperature gradient, and ther-
mal conductivity we haveqx

i = kx
i ∇Tx. Thus, the total

heat (per unit time) entering the composite,H , is given
by

H =
n∑

i =1

kx
i di∇Tx. (5)

Now, treating the composite as a single component with
x-directional thermal conductivitykx

eff, we have that
qx

eff= kx
eff∇Tx, and

H = kx
eff d∇Tx. (6)

Equating (5), (6), yields (3).
For the case of heat flow perpendicular to the lay-

ers, which are assumed to be of infinite extent in the
x-direction, we assume a constant temperature gra-
dient∇T y is maintained across the composite in the
y-direction. From the conservation of heat, we have
that the amount of heat (per unit time, per unit length
in thex-direction,H̃ , is constant flowing through each
of the layers. Thus,

H̃ = ky
1∇T y

1 = ky
2∇T y

2 = · · ·= ky
n∇T y

n , (7)
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where∇T y
i denotes the temperature gradient acrossl i

in the y-direction. Treating the composite as a single
material with a temperature gradient∇T y and thermal
conductivityky

eff we have

H̃ = ky
eff∇T y. (8)

Combining (7) and (8) together with

∇T y=
n∑

i =1

∇T y
i ,

we obtain (4). ¤

Note: Equations 3, and 4 also follow from 2, see [15],
p. 15.

We next introduce a class of composites which we
refer to asparallelepiped type.

Definition 2 (Composite of parallelepiped type). A
composite in IRn is said to be of parallelepiped type
if its fundamental componentconsists of an under-
lying material M (matrix) and disjoint constitutive
componentsCi , i =1, . . . , N, where theCi are paral-
lelepipeds.

In IR2 a composite of parallelepiped type is made
up of an underlying matrix with disjoint rectangular
constitutive components (see Fig. 3).

For a composite of parallelepiped type occupying
[a,b]× [c,d], let l V

α := [aα,bα]× [c,d], α=1, . . . , η
denote a partitioning of thefundamental component
into vertical strips, in which the thermal conductivities
are only functions of height,y (see Fig. 4). Using (3) and
(4), the effectivex- andy-thermal conductivities within

k0
11 = inf

u∈H1(¥)
〈(λ+∇u) ·K(λ+∇u)〉 with λ= [1,0]T

≤ inf{〈(λ+∇u) ·K(λ+∇u)〉, λ= [1,0]T , u(x, y)= f (x) ∈ H1(¥)}

= inf

{
1

(b−a)(d− c)

n∑
α=1

∫
l V
α

∫
(1+ f ′(x))k11(x, y)(1+ f ′(x)) dy dx, u(x, y)= f (x) ∈ H1(¥)

}

= inf

{
1

(b−a)(d− c)

η∑
α=1

∫ bα

aα

(1+ f ′(x))2
∫ d

c
k11(x, y) dy dx, u(x, y)= f (x) ∈ H1(¥)

}

= inf

{
1

(b−a)(d− c)

η∑
α=1

∫ bα

aα

(1+ f ′(x))(d − c)kV x
α (1+ f ′(x)) dx, u(x, y)= f (x) ∈ H1(¥)

}

= inf

{
1

(b− a)

η∑
α=1

∫ bα

aα

(1+ f ′(x))kV x
α (1+ f ′(x)) dx,u(x, y)= f (x) ∈ H1(¥)

}
(12)

= kCV x

eff , (13)

each layerl V
α can be calculated, which we denote by

kV x
α andkV y

α , respectively.

Correspondingly, consider thefundamental compo-
nent partitioned into horizontal layersl H

β := [a,b]×
[cβ,dβ ], β =1, . . ., µ, in which the thermal conductiv-
ities are only functions of the horizontal variablex.
Again, using (3) and (4), the effective thermal conduc-
tivities within each layer l H

β may be calculated,
which we denote bykHx

β and kHy
β .

Now, consider two “layered” composites,CV and
CH , whereCV has vertical layers of widths (bα −
aα), α=1, . . . , η with conductiviteskV x

α andkV y
α , and

CH has horizontal layers with heights (dβ − cβ), β =
1, . . . , µwith conductiviteskHx

β andkHy
β . Again, using

(3) and (4), we can compute the effective thermal con-
ductivity matrices forCV andCH , which we denote
respectively as

KCV

eff =
(

kCV x

eff 0

0 kCV y

eff

)
and KCH

eff =
(

kCHx

eff 0

0 kCHy

eff

)
.

(9)

Both matricesKCV

eff andKCH

eff are approximations to the
effective thermal conductivity matrix for the composite
of parallelepiped type. In fact,

Theorem 3. For a composite of parallelelepiped
type the (homogenized) effective thermal conductivity
satisfies

k0
11 ≤ kCV x

eff , (10)

k0
22 ≤ kCHy

eff . (11)

Proof: We establish (10), with (11) following by an
analogous argument. To show thatk0

11 ≤ kCV x

eff we begin
with (2).

as (12) represents the effective thermalx-conductivity
of CV . ¤
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Figure 4 Partition of composite into verticallayers.

Figure 5 Partition of composite into horizontallayers.

The attractiveness of the approximation described in
this section is its algebraic simplicity. Using the ho-
mogenization theory described in Section 2.1 an ap-
proximation to the effective thermal conductivity ma-
trix requires one to formulate and solve a numerical
approximation to (2), see [7]. The approximation ap-
proach presented in this section enables closed form
approximations for the thermal conductivities to be de-
termined. These closed form expressions may be used
in determining if particular features of a composite play
a significant role in determining the effective thermal
conductivities. Below in Table I we compare the ho-
mogenized value for the conductivities for two com-
posites, illustrated in Fig. 6 with their layered approx-
imations. The fundamental units A and B were chosen
to model a composite comprised of a matrix with a
centered (square) fiber and 4 pores. Two of the pores,

TABLE I Homogenized and layered approx. of effectivekx (W/m K)

km=64.3 kf =0.76 km=31.42 kf =4.30

Homog. Layered Homog. Layered

Unit A 7.78 8.72 5.10 7.14
Unit B 8.05 9.26 5.04 7.23

positioned beside the fiber, model cracks at the fiber
matrix interface, and the other pores represent cracks
within the matrix itself. The volumes of matrix, fiber,
and pores (assumed isotropic) used were (see Sample
19, Table III) 22.5 , 48.6 , 28.9%. The value used for the
conductivity of the pores waskv=2.4×10−2 W/mK
which represents the conductivity of air at room tem-
perature.
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Figure 6 Two fundamental units for a 2D composite.

3. Estimation of thermal conductivities
In this section we demonstrate the effectiveness of
the layered approximation approach described in Sec-
tion 2.2 to the estimation of the thermal conductivities
of carbon-carbon composites.

3.1. Carbon-carbon composites
To test the model, two composite types made by Klett
[11] were used as baseline composites. These compos-
ites were made by a towpregging process whereby a
Mitsubishi AR mesophase pitch (designated AR-120)
was used as the matrix aroundT300 andP55 carbon
fibers. The thermal diffusivity of these composites was
measured at room temperature on a Xenon Pulse Flash
measurement device at Oak Ridge National Laboratory.
The thermal conductivity was then calculated using ma-
terial properties. For each sample composite variables,
such as volume fraction of fibers, volume fraction of
voids, etc., were determined by optical image analysis.

3.1.1. Parallel to the fibers
Presented in Table II is the data describing the collection
of carbon-carbon composites from [11], including the
measured thermal conductivities in the direction paral-
lel to the fibers. To obtain the algebraic estimates, also
presented in Table II and illustrated in Fig. 7, we apply
the simple weighted average Equation 3, corresponding
to heat flow in a layered material with layers parallel
to the direction of heat flow. The values of the con-
ductivities for the matrix, fibers, and voids used were
km=6.2 W/mK, kf =8.5 W/mK, andkv=2.4×10−2

W/mK, respectively.
To determine the value of the matrix conductivity of

the composites, Klett [11] measured the thermal con-
ductivities of three samples from each batch of com-
posites. The error associated with the measured value
of thermal conductivity may be as high as 5% with a
95% confidence interval. Also required in order to back
out the matrix conductivity was the measurement of
void fraction which was estimated to within 5%. Thus

TABLE I I Thermal conductivity (in W/mk) in the direction parallel
to the fibers

Fiber Void Matrix
Sample Vol % Vol % Vol % Measured Estimated

1 48.5 12.7 38.8 5.9 6.53
2 48.5 12.5 39.0 6.1 6.54
3 34.5 28.2 37.3 4.42 5.25
4 34.5 33.1 32.4 4.79 4.95
5 34.5 34.8 30.7 4.86 4.84
6 34.5 34.8 30.7 4.62 4.84
7 34.5 31.7 33.8 4.47 5.04
8 34.5 29.4 36.1 4.59 5.18
9 34.5 38.3 27.2 4.79 4.63

10 34.5 36.2 29.3 4.74 4.76
11 34.5 33.3 32.2 5.26 4.94
12 34.5 41.2 24.3 4.59 4.45
13 34.5 35.3 30.2 4.71 4.81
14 34.5 37.0 28.5 4.98 4.71
15 34.5 37.8 27.7 5.11 4.66
16 34.5 34.2 31.3 4.71 4.88
17 34.5 38.9 26.6 4.42 4.59
18 34.5 39.1 26.4 4.54 4.58
19 34.5 39.2 26.3 5.0 4.57
20 34.5 41.5 24.0 4.52 4.43

the error in the value used for the matrix conductivity
of the composites is accurate to at best 5%.

From the data presented in Table II and the associated
graph in Fig. 7, the simple weighted average formula,
represented by the solid line, does a reasonable job of
estimating the conductivities, given the uncertainities
in the values for the conductivities of the matrix and
the fiber, and that of the measured conductivities.

3.2. Perpendicular to the fibers
In modeling the conductivity perpendicular to the fibers
we assume that within the fundamental unit there are
four rectangular voids of equal size, with the largest
side having length equal to the side length of the fiber,
which we model as being square. (Though the square
and rectangular geometry is not physically accurate,
we show in Section 4 that the difference in thermal
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Figure 7 Estimated and measured values of thermal conductivity in the direction parallel to the fibers.

conductivity using a square and circular fiber is neg-
ligible.) Given the volume percentages of fibers and
voids in each sample, the dimensions of the fiber and
voids in the fundamental units, see Fig. 6, are deter-
mined. Using the computational procedure described
following Definition 2 for approximating the conduc-
tivity of a composite of parallelepiped type, an estimate
(a guaranteed upper bound, see Theorem 3) for the con-
ductivity of the fundamental unit is computed. For the
results given in Table III, and illustrated graphically in
Fig. 8, we use both configurations presented in Fig. 6
as “fundamental units” and then averaged the predicted
conductivities. The conductivity values used for the ma-
trix and fibers were those given in [11]. These values
were derived based on the assumption thatthe conduc-
tivity perpendicular to the basal plane should be two
orders of magnitude less than that parallel to the basal
plane.

The layered estimates appeared to follow the trends
of the measured data but overcompensate when the
trend would change. To compensate this behavior, us-
ing sample values 5 and 12 we applied a non-linear

minimization to determine values forkm andkf which
would best “fit” these two data points. The values ob-
tained werekm=31.23 W/mK, kf =4.30 W/mK. Us-
ing these values for the conductivities the layered ap-
proximation again captures the trends exhibited by the
measured values and in addition more closely matches
these values.

4. Modeling effect of square versus
circular fibers

In keeping with the approach of constructing a “sim-
ple” approximation method for the estimation of ther-
mal conductivity we have modeled the fibers as having
square cross-section. For heat transport parallel to the
fiber axis one obtains the same value for the approxi-
mation for fibers with square or circular cross-section
(assuming the same cross-sectional areas). The situa-
tion for flow perpendicular to the fiber axis is more
complicated. In [7] numerical experiments were per-
formed to compare the difference in the effective ther-
mal conductivities of square and circular fibers in the
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TABLE I I I Thermal conductivity W/mK in the direction perpendicular to the fibers

Estimated

km=64.3 km=31.23
Sample Fiber Vol % Void Vol % Matrix Vol % Measured kf =0.76 kf =4.30

1 54.3 7.3 38.4 10.20 17.47 11.46
2 57.3 8.6 34.1 16.10 15.12 10.38
3 60.6 11.0 28.4 16.10 12.21 9.01
4 40.7 41.9 17.4 3.84 4.41 5.28
5 40.7 42.9 16.4 4.79 3.64 4.99
6 40.7 44.5 14.8 3.32 2.36 4.53
7 40.7 45.6 13.7 4.12 1.42 4.20
8 40.7 38.8 20.5 9.59 6.64 6.15
9 40.7 44.6 14.7 5.96 2.27 4.50

10 60.6 25.0 14.4 6.82 5.60 5.79
11 60.6 32.3 7.1 5.57 1.98 4.25
12 60.6 25.9 13.5 6.38 5.17 5.61
13 60.6 26.3 13.1 6.66 4.97 5.51
14 60.6 28.0 11.4 6.19 4.15 5.15
15 48.6 26.0 25.4 5.24 10.57 7.90
16 48.6 33.0 18.4 6.50 6.68 6.18
17 48.6 29.9 21.5 6.64 8.43 6.94
18 48.6 31.7 19.7 6.44 7.43 6.50
19 48.6 28.9 22.5 6.11 8.99 7.18
20 48.6 27.2 24.2 7.40 9.92 7.60
21 48.6 29.1 22.3 5.86 8.88 7.14
22 58.4 30.6 11.0 4.45 3.75 4.98
23 58.4 27.0 14.6 6.28 5.56 5.76
24 58.4 24.9 16.7 3.88 6.58 6.22
25 58.4 23.8 17.8 7.35 7.12 6.46
26 58.4 29.6 12.0 6.78 4.26 5.19

Figure 8 Estimated and measured values of thermal conductivity in the direction perpendicular to the fibers (km=31.23 W/mK, kf =4.30 W/mK).
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fundamental unit, for flow perpendicular to the fiber
axis. Forkm=1 (fixed),kf values of 0.10, 0.25, 0.50,
and 0.75, and for fiber volumes,Vf =25 and 50% the
difference in the conductivities between the composites
having square and circular fibers was, in all cases, less
than 2%. Hence, modeling using square fibers is clearly
justified.

5. Concluding remarks
In this article we demonstrated that a “layered” approx-
imation gives an easily computable, reasonable accu-
rate, approximation for the effective thermal conductiv-
ity of carbon-carbon composites. It is interesting to note
the accuracy of the estimation in view of the fact that
this approach completely ignores the micro-structure
of the composites, and only uses very coarse assump-
tions about the macro-structure. This indicates that the
important factors in estimating effective thermal con-
ductivity of composites are the constitutive parameters,
such as the volumes of the various components and
their thermal properties. Issues such as crack profiles
and distributions are of secondary importance.
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