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In this article we introduce the concept of homogenization for the approximation of the
effective thermal conductivity of composites. A simple algebraic approximation method is
proposed and shown to yield an upper bound for the effective conductivity. Numerical
results are given for uni-directional carbon-carbon composites which demonstrate the
validity of the approach. © 1999 Kluwer Academic Publishers

1. Introduction introduced which models the voids in the composite. In
The ability to accurately predict material constants forthe case of a composite composed of isotropic fibers and
composite materials has been, and continues to be, an isotropic matrix, the variable dispersive model does
active area of research. One such constant of interest isasonable well at predicting the conductivity, as the
the (effective) thermal conductivity of the composite. model is based on isotropic material properties. How-
The simplest case for consideration is that of a unidi-ever the model is not as reliable in the case of compos-
rectional, fiber reinforced, composite in which all the ites with anisotropic fibers and matrix. The estimates of
fibers are assumed to be parallel, and periodically diseonductivity described in [11] are obtained via a finite
tributed throughout the composite. For the estimatiorelement method approximation of the steady-state heat
of the conductivity parallel to the fiber axis, a simple flow across a “fundamental unit”. The approximation
weighted average of the constituents has been found farocedure described within is much simplier and the
yield accurate results [4, 10, 14, 16], as the highly con-estimates obtained are comparable in accuracy to those
ductive fibers transport most of the heat flow throughpredicted by [11]. The approach described in [3] relies
the composite. on the solution of an auxilary problem in an unbounded
The estimation of the conductivity perpendicular to domain and does not account for the occurance of voids
the fiber axis has not been nearly as successful. In thig the composite.
case the matrix itself is largely responsible for the heat In this article we introduce the conceptlmdmoge-
transport, with the fibers, pores and cracks, servinguizationfor the estimation of conductivities for com-
to disrupt the direct heat flow through the composite posites, which falls into the class (iii) described above
Three approaches which have been used are: (Section 2.1). We then propose a simple algebraic ap-
proach, based upon considering the composite as being
(i) the reciprocal of the average of the reciprocal ofmade up of “layers”, for the estimation of the effective

the constituents (see (4), [6, 14]), thermal conductivities (Section 2.2). We show that the
(i) a variable dispersive model [13, 16], proposed method (theoretically) yields an upper bound
(ii) estimations based upon calculations fofumda-  for the conductivity. A comparison of the theoretical

mental unif3, 9, 11]. results with measured data is given (Section 3).

The effect of porosity(voids and cracks within the com-2. Modeling thermal conductivity

posite) is much more pronounced on the conductivity of composites

perpendicular to the fiber axis than in the parallel caseln order to model theffectivehermal conductivity of a

In the variable dispersive model a shape parameter isompositeve must assume some underlying structure
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4 The notationH ~1(Q) denotes the “dual space” of
H(Q), i.e. the set of all continuous linear functionals
onH(Q), (see[12)). Iff is an element oH ~1(m) then

(f, ) represents the value of the functional applied to
¢ € H3(Q).

Strong convergencén Hi(Q) is denoted by the
symbol—. Strong convergence refers to convergence
d with respect to the norm, i.ef — u® if lim . _, o|ju¢ —
u)| HQ) = 0. Weak convergends denoted by-~. We
write u¢ — u®in HI(Q) if lim . _, o( f, u¢) = (f, u°) for

. . all f e H71(Q). Weak convergence may be interpreted
for the composite. Throughout we will assume that the, ihe indirect sense of “action”, i.e. if the action f

composite is periodic in all directions and we refer to ;¢ converges to the action df on u® ase — 0 for
the unit which is periodically repeated as thida- | ¢ ¢ H-Y(Q), thenu¢ — u°.

mental componentfor the composite. (See Fig. 1 fora Convergencé in.2(Q) is defined analogously.
2D illustration.) The effective thermal conductivity is a

“bulk” property of thecompositeand is independent of

the ‘size’ of the composite. It corresponds to consider- ¢ Homogenization model

ing the material to be macroscopically homogeneous,, wis section we follow the notation and presenta-
Mathematically this corresponds to considering the valy; ;1 in [15]. Let K(x), x € R™ be a periodic matrix

ues associated with the composite as the ratlc'n”y'bf ith bounded elements;;, satisfying the ellipticity
goes to zero. (See [2, 15] for a precise description o, qition

this limiting process.) Following a description of the

notation used, in Section 2.1 we give the characteriza o m

tion of the effective thermal conductivity matrix for a IZJ: Kijninj = valnl, forally, x € RT, wherev, > 0.
composite from homogenization theory. Presented in (1)
Section 2.2 is a simplified model which yields an uppeny,e assume that the matrix

bound to the values of the effective thermal conductiv-

ity matrix by purely algebraic means. A comparison of KE(x) = K(e1x)

the models for twdundamental componentss given.

Figure 1 lllustration of a 2D composite.

characterizes micro-nonhomogeneous medium

Notation
Following standard notation, we denote b$(Q) the

space of functions defined g which are square inte- K(x). if for any bounded domaifp  R™ and anyf ¢

grable, andH*(Q) functions, which along with them- "/ . P ©
selves being square integrable, having a square inte|:| (Q) the solutions.* of the Dirichlet problem

grable gradient (see [12]). The norm associated with

Definition 1 ([15], p. 12) A constant positive definite
matrix K° is said to be the homogenized matrix for

U € HA(Q), div(KeVu) = 1,

HY(Q)is
Ul = [[ull2+ |u[? possess the following convergence properties:
HY-— 0 1
where ue o, u®, Kcevue 29 KOVWO,
full3 :=/ u? dx, |u|§:=f |Vul? dx. as € — 0, whereu® is the solution of the Dirichlet
Q Q problem
The spaceH3(Q) denotes those functions iH(Q) W e HAQ), div(kKOVuo)= f.

which are zero 0 Q, the boundary ofQ.

Consider functions defined inRand periodic in  Thegrem 1 ([15], p. 18)Letk be a symmetric periodic
eachargumeng, X, ... ., Xmwithperioddy, Iz, ... Im,  matrix with bounded elements satisfying the ellipticity

respectively. Lem represent the basic parallglepiped condition(1). Then the symmetric matrig® defined by
whose edges are directed along the co-ordinate axes

and have respective lengthsl,, ..., Im. By (g) we A KO = inf (V) - KA +V0), (2
represent the mean value of the periodic functi(), veH(m)
ie.,

is the homogenized matrix fi in the sense of Defini-

1 tion 1.
o= / g(x) dx.

where |m| denotes the volume of the parallelpipmd 2.2. Layered approximating model
The space ofH? functions with periods we denote by The model we present in this section is based on ap-
H(m). proximating the composite bylayeredcomposite. We
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y and
d1 X y d

ket = <73 vy
dzi T o1 (di/kiy)

where ¢ denotes the height of laygr, having thermal
conductivities K, and ¥, and d= 3"_, d;.

(4)

‘ ‘ Proof: To establish (3), we assume the model com-
1 | posite extends periodically in thedirection and a con-

_ stant temperature differenc&T, is maintained across

d, I the entire composite in thedirection. Denoting by}

J the heat-flux at the left of the material along lajere
have the amount of heat (per unit time) flowing through
l; is given byg)d;. Using the basic constitutive rela-
tion between heat-flux, temperature gradient, and ther-
I_E‘al conductivity we havg* =k*VT*. Thus, the total

Figure 2 Homogeneous anistropic layered material.

restrict our attention to composites whose componen
share the same principal axes of heat conduction. F
clarity of exposition our presentationisin 2D. We begin y
by giving a simple derivation for the effective thermal
conductivity for a layered composite. The derivation is H— i K VT )
analogous to the presentation in [1, 8] for the effective o : '

hydraulic conductivity in a layered medium in ground-
water flow.

Consider théayeredcomposite illustrated in Fig. 2.
Within each of the layerd; having widthd;, we as- X —K,VTX, and
sume that the material is homogeneous and anisotropﬂ,eff — eff '
with, the principal axes of thermal conductivity aligned

eat (per unittime) entering the compositg,is given

i=1

Now, treating the composite as a single component with
x-directional thermal conductivitk}s, we have that

with the x—y axes with conductivity values’, andk’, H=kidVT" (6)
respectively.

Based on these assumptions we have the followingzquating (5), (6), yields (3).
theorem. For the case of heat flow perpendicular to the lay-

ers, which are assumed to be of infinite extent in the

Theorem 2. For a 2D ‘vertically’ layered composite, X-direction, we assume a constant temperature gra-
whose layers have the same principal axes of heat corflient VTY is maintained across the composite in the

duction, the effective thermal conductivies of the comY-direction. From the conservation of heat, we have
posite K, and K, are given by that the amount of heat (per unit time, per unit length

in the x-direction,H, is constant flowing through each
of the layers. Thus,

n
d;
X X
p—vl — K\ N 3 ~
ket .; R ) H=k/VT)=KVT)=...=KIVTY, (7)

Figure 3 Example of a 2D composite of parallelepiped type.
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whereVT?Y denotes the temperature gradient acipss ~ Correspondingly, consider tfiendamental compo-
in the y- direction. Treating the composite as a singlenent partitioned into horizontal layer' :=[a, b] x
material with a temperature gradiewiT ¥ and thermal  [Cg. dg], B =1, ..., u, inwhichthe thermal conductiv-
conductivitykgﬁ we have ities are only functions of the horizontal variabte
Again, using (3) and (4), the effective thermal conduc-
tivities within each layer!} L may be calculated,
which we denote byk!'* and k/3 y
o _ Now, consider two “layered” composﬁe@v and
Combining (7) and (8) together with cH, whereCV has vertical layers of widthsb{ —
aag o= , n with conduct|V|teskVX andk, ’, VY “and
n C" has honzontal layers with helghtd —Cg), B=
VT = Z VTiy’ 1,..., nwith COﬂdUCtIVIteSkE'X andk.,” ﬁganf)usmg
=1 (3) and (4), we can compute the effective thermal con-
ductivity matrices forC¥ andC", which we denote
respectively as

H=kVTY. (8)

we obtain (4). O

Note Equations 3, and 4 also follow from 2, see [15], CVx CH
cV ke 0 k 0
p. 15. _ . . o | and K = v
We next introduce a class of composites which we 0 kgx 0 Kgx
refer to agparallelepiped type. ©)

Definition 2 (Composite of parallelepiped typed
composite in IR is said to be of parallelepiped type
if its fundamental componentconsists of an under-
lying material M (matrix) and disjoint constitutive
components’;,i =1,..., N, where theC; are paral-
lelepipeds.

Both matricesC$; andKS, are approximations to the
effective thermal conductivity matrix for the composite
of parallelepiped type. In fact,

Theorem 3. For a composite of parallelelepiped

type the (homogenized) effective thermal conductivity
In IR? a composite of parallelepiped type is madesatisfies

up of an underlying matrix with disjoint rectangular

constitutive components (see Fig. 3). k9, < Cf: . (10)
For a composite of parallelepiped type occupying o oy
[a,b] x [c,d], letlY :=[a,,b,] x[c,d],a=1,...,7 kay < Kei - (11)

denote a partitioning of thiindamental component

into vertical strips, in which the thermal conductivities Proof:  We establish (10), with (11) following by an
are only functions of heighy, (see Fig. 4). Using (3)and analogous argument. To show théf < kgﬁ we begin
(4), the effectivex- andy-thermal conductivities within ~ with (2).

kY, = ||51f (x4 Vu) - (1 + Vu)) with A =[1, 0]"
< infl{+Vu)- K +Vu)), 1=[1,0]", u(x,y)=f(x) e H(m)}
il : : _ 1
= inf (b_a)(d_c);[y/(uf(x))kn(x, YA+ f'(x))dydx, u(x,y)=f(x)eH (-)}
n b, d
= inf Wl(d—c);/au a+ f’(x))Z/C kia(x, y)dydx, u(x,y)=f(x) e Hl(l)}
S S Xn:/b”(u f/00)(d — OkY¥(1+ f/(X)dx, u(x,y)=f(x) e Hl(-)}
~Me-ad—o & /s 2 > U=
= inf b3 Z:l/:a(qu f/O)KY*(1+ f/(x)) dx, u(x, y)= f(x) € Hl(l)} (12)
= K& (13)

each IayeliV can be calculated, which we denote by as (12) represents the effective thermalonductivity
kX andky ”, respectively. of CV. a
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Figure 5 Partition of composite into horizontilyers

The attractiveness of the approximation described if ABLE | Homogenized and layered approx. of effectiygW/m K)
this section is its algebraic simplicity. Using the ho-
mogenization theory described in Section 2.1 an ap-
proximation to the effective thermal conductivity ma- Homog. Layered Homog. Layered
trix requires one to formulate and solve a numerical—
approximation to (2), see [7]. The approximation ap-gzgg ggg g;é 2'32 ;g
proach presented in this section enables closed form ' ' ' '
approximations for the thermal conductivities to be de-
termined. These closed form expressions may be used
in determining if particular features of a composite playpositioned beside the fiber, model cracks at the fiber
a significant role in determining the effective thermal matrix interface, and the other pores represent cracks
conductivities. Below in Table | we compare the ho-within the matrix itself. The volumes of matrix, fiber,
mogenized value for the conductivities for two com- and pores (assumed isotropic) used were (see Sample
posites, illustrated in Fig. 6 with their layered approx- 19, Table I1l) 22.5, 48.6 , 28.9%. The value used for the
imations. The fundamental units A and B were choserconductivity of the pores wals, = 2.4 x 1072 W/mK
to model a composite comprised of a matrix with awhich represents the conductivity of air at room tem-
centered (square) fiber and 4 pores. Two of the poreqerature.

km =643 ks =0.76 km =31.42 ks =4.30
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Figure 6 Two fundamental units for a 2D composite.

3. Estimation of thermal conductivities TABLE Il Thermal conductivity (in W/mKk) in the direction parallel
In this section we demonstrate the effectiveness of° e fibers
the layered approximation approach described in Sec- Fiber  Void Matrix

tion 2.2 to the estimation of the thermal conductivitieSsample  Vol%  Vol% Vol % Measured  Estimated
of carbon-carbon composites.

1 485 12.7 38.8 5.9 6.53
2 48.5 125 39.0 6.1 6.54

3 345 28.2 37.3 4.42 5.25

3.1. Carbon-carbon composites 4 345 33.1 32.4 4.79 4.95
To test the model, two composite types made by Klett 34.5 34.8 30.7 4.86 4.84
[11] were used as baseline composites. These compos?— gjg g‘l"g gg'; j‘i? g'gj
ites were made by a towpregging process whereby ag 345 204 361 459 518
Mitsubishi AR mesophase pitch (designated AR-120) o 34.5 38.3 27.2 4.79 4.63
was used as the matrix aroufid00 andP55 carbon 10 345 36.2 29.3 474 4.76
fibers. The thermal diffusivity of these composites was!! 34.5 333 322 5.26 4.94
measured at room temperature on a Xenon Pulse Fla gjg ‘S‘ég ggg j‘?i’ j'gi
measurement device at Oak Ridge National Laboratory; 4 345 370 285 4.98 471
The thermal conductivity was then calculated using ma4s 34.5 37.8 27.7 5.11 4.66
terial properties. For each sample composite variablesg 345 34.2 313 471 4.88
such as volume fraction of fibers, volume fraction of g gj-g gg-i 22-2 j-;‘i j-gg
voids, etc., were determined by optical image anaIyS|s19 s 392 6.3 5o 457
20 345 415 24.0 452 4.43

3.1.1. Parallel to the fibers
Presentedin Table llisthe data describing the collection
of carbon-carbon composites from [11], including thethe error in the value used for the matrix conductivity
measured thermal conductivities in the direction paralof the composites is accurate to at best 5%.
lel to the fibers. To obtain the algebraic estimates, also Fromthe data presented in Table Il and the associated
presented in Table Il and illustrated in Fig. 7, we applygraph in Fig. 7, the simple weighted average formula,
the simple weighted average Equation 3, correspondintgpresented by the solid line, does a reasonable job of
to heat flow in a layered material with layers parallel €stimating the conductivities, given the uncertainities
to the direction of heat flow. The values of the con-in the values for the conductivities of the matrix and
ductivities for the matrix, fibers, and voids used werethe fiber, and that of the measured conductivities.
Km = 6.2 W/mK, ki =8.5W/mK, andk, =2.4 x 102
W/mK, respectively.

To determine the value of the matrix conductivity of 3.2. Perpendicular to the fibers
the composites, Klett [11] measured the thermal conin modeling the conductivity perpendicular to the fibers
ductivities of three samples from each batch of comwe assume that within the fundamental unit there are
posites. The error associated with the measured valueur rectangular voids of equal size, with the largest
of thermal conductivity may be as high as 5% with aside having length equal to the side length of the fiber,
95% confidence interval. Also required in order to backwhich we model as being square. (Though the square
out the matrix conductivity was the measurement ofand rectangular geometry is not physically accurate,
void fraction which was estimated to within 5%. Thus we show in Section 4 that the difference in thermal
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Figure 7 Estimated and measured values of thermal conductivity in the direction parallel to the fibers.

conductivity using a square and circular fiber is neg-minimization to determine values faa, andk; which
ligible.) Given the volume percentages of fibers andwould best “fit” these two data points. The values ob-
voids in each sample, the dimensions of the fiber andained werek, =31.23 W/mK, ki =4.30 W/mK. Us-
voids in the fundamental units, see Fig. 6, are detering these values for the conductivities the layered ap-
mined. Using the computational procedure describeghroximation again captures the trends exhibited by the
following Definition 2 for approximating the conduc- measured values and in addition more closely matches
tivity of a composite of parallelepiped type, an estimatethese values.
(aguaranteed upper bound, see Theorem 3) for the con-
ductivity of the fundamental unit is computed. For the
results given in Table I, and illustrated graphically in 4. Modeling effect of square versus
Fig. 8, we use both configurations presented in Fig. 6 circular fibers
as “fundamental units” and then averaged the predicteth keeping with the approach of constructing a “sim-
conductivities. The conductivity values used for the ma-le” approximation method for the estimation of ther-
trix and fibers were those given in [11]. These valuesmal conductivity we have modeled the fibers as having
were derived based on the assumption thatconduc- square cross-section. For heat transport parallel to the
tivity perpendicular to the basal plane should be twofiber axis one obtains the same value for the approxi-
orders of magnitude less than that parallel to the basalmation for fibers with square or circular cross-section
plane. (assuming the same cross-sectional areas). The situa-
The layered estimates appeared to follow the trendson for flow perpendicular to the fiber axis is more
of the measured data but overcompensate when theomplicated. In [7] numerical experiments were per-
trend would change. To compensate this behavior, uformed to compare the difference in the effective ther-
ing sample values 5 and 12 we applied a non-lineamal conductivities of square and circular fibers in the
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TABLE |1l Thermal conductivity W/mK in the direction perpendicular to the fibers

Estimated
km =64.3 km=31.23
Sample Fiber Vol % \oid Vol % Matrix Vol % Measured ki =0.76 ki =4.30
1 54.3 7.3 38.4 10.20 17.47 11.46
2 57.3 8.6 34.1 16.10 15.12 10.38
3 60.6 11.0 28.4 16.10 12.21 9.01
4 40.7 41.9 17.4 3.84 4.41 5.28
5 40.7 42.9 16.4 4.79 3.64 4.99
6 40.7 44.5 14.8 3.32 2.36 4.53
7 40.7 45.6 13.7 4,12 1.42 4.20
8 40.7 38.8 20.5 9.59 6.64 6.15
9 40.7 44.6 14.7 5.96 2.27 4.50
10 60.6 25.0 14.4 6.82 5.60 5.79
11 60.6 32.3 7.1 5.57 1.98 4.25
12 60.6 25.9 13.5 6.38 5.17 5.61
13 60.6 26.3 13.1 6.66 4.97 5.51
14 60.6 28.0 11.4 6.19 4.15 5.15
15 48.6 26.0 25.4 5.24 10.57 7.90
16 48.6 33.0 18.4 6.50 6.68 6.18
17 48.6 29.9 215 6.64 8.43 6.94
18 48.6 31.7 19.7 6.44 7.43 6.50
19 48.6 28.9 22.5 6.11 8.99 7.18
20 48.6 27.2 24.2 7.40 9.92 7.60
21 48.6 29.1 22.3 5.86 8.88 7.14
22 58.4 30.6 11.0 4.45 3.75 4.98
23 58.4 27.0 14.6 6.28 5.56 5.76
24 58.4 24.9 16.7 3.88 6.58 6.22
25 58.4 23.8 17.8 7.35 7.12 6.46
26 58.4 29.6 12.0 6.78 4.26 5.19
20
o a
S 8 Measured
= —— Predicted
=
et
0
=
ke
c
O 10 1
(8]
©
£
S
Q
=
=
0 T T
0 10 20
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Figure 8 Estimated and measured values of thermal conductivity in the direction perpendicular to thekfibe®1(23 W/mK, ki = 4.30 W/mK).
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fundamental unit, for flow perpendicular to the fiber  “Asymptotic Analysis for Periodic Structures” (North-Holland,
axis. Forky =1 (fixed), ks values of 0.10, 0.25, 0.50, 1978).

and 0.75, and for fiber volume¥; = 25 and 50% the 3 ;H EE;‘(\;S;O')SZE%T'ZS%ZEN andG. J. DVORAK, J. Appl.
d|ﬁgrencemtheconductlwtle_zs between_the composites, yBRENNAN, L. D. BENTSEN and D. P. H.
having square and circular fibers was, in all cases, less jasseLmANN, J. Mater. Sci17 (1982) 2337-2342.

than 2%. Hence, modeling using square fibersis clearlys. p. G. CIARLET,P. G.,“The Finite Element Method for Elliptic

justified. Problems” (North-Holland, 1978).
6. D. M. DAWSON andA. BRIGGS, J. Mater. Sci 16 (1981)
3346-3356.
. 7. V. J. ERVIN, Preprint, Clemson University, 1998.
5. Concluding remarks 8. R. A. FREEZEandJ. A. CHERRY, “Groundwater” (Prentice-

In this article we demonstrated that a “layered” approx-  Hall, 1979).
imation gives an easily computable, reasonable acculﬁ- S. M. GROVE, Composites Sci. TecB8 (1990) 199—239-

H H H H .J. P. HARRIS, B. YATES, J. BATCHELOR andP. J.
rate, approximation for the effec'uvg thermal c_onductlv- CARRINGTON, J. Mater. Sci17 (1982) 2925-2931.
ity of carbon-carbon compos_ltes_. It '_S Interesting to nOIell. J. W. KLETT, PhD thesis, Clemson University, 1994.
the accuracy of the estimation in view of the fact thatiz, ;. L. Lions andE. MAGENES, “Nonhomogeneous Boundary
this approach completely ignores the micro-structure Value Problems and Applications” (Springer-Verlag, 1972).
of the composites, and only uses very coarse assump3. J- T. MOTTRAM andR. TAYLOR, Composites Sci. Technol
tions about the macro-structure. This indicates that the 29 (1987) 211-232.
. . . . . 4. M. W. PILLING, B. YATES, M. A. BLACK andP.
|mpqr§ant factors in estimating eﬁegtlvg thermal con- TATTERSALL, J. Mater. Sci14(1979) 1326-1328.
ductivity of composites are the constitutive parametersis v. v. jikov,s. M. KozLoV ando. A. OLEINIK, “Ho-
such as the volumes of the various components and mogenization of Differential Operators and Integral Functionals”
their thermal properties. Issues such as crack profiles (Springer-Verlag, 1994).

and distributions are of secondary importance. 16. A. J. WHITTAKER andR. TAYLOR, Proc. R. Soc. Lond. A
yimp 430(1990) 199-211.
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